Posted on

placenta seeds

Chili pepper (Capsicum spp.) is one of the most important horticultural crops worldwide, and its unique organoleptic properties and health benefits have been established for centuries. However, there is little knowledge about how metabolites are distributed throughout fruit parts. This work focuses on the use of liquid chromatography coupled with high resolution mass spectrometry (UHPLC-ESI-HRMS) to estimate the global metabolite profiles of the pericarp, placenta, and seeds of Tabasco pepper fruits (Capsicum frutescens L.) at the red mature stage of ripening. Our main results putatively identified 60 differential compounds between these tissues and seeds. Firstly, we found that pericarp has a higher content of glycosides, showing on average a fold change of 5 and a fold change of 14 for terpenoids when compared with other parts of the fruit. While placenta was the richest tissue in capsaicinoid-related compounds, alkaloids, and tocopherols, with a 35, 3, and 7 fold change, respectively. However, the seeds were richer in fatty acids and saponins with fold changes of 86 and 224, respectively. Therefore, our study demonstrates that a non-targeted metabolomic approach may help to improve our understanding of unexplored areas of plant metabolism and also may be the starting point for a detailed analysis in complex plant parts, such as fruits.

Keywords: Capsicum frutescens L.; Liquid Chromatography coupled to Mass Spectrometry (LC-MS); non-targeted metabolomics; secondary metabolism.

Conflict of interest statement

The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the result.

Cherry tomato ( Lycopersicon esculentum Mill.) seeds harvested from fruits at four stages of development [2, 4, 6 and 8 weeks after flowering (WAF)] were washed (1% HCl) and germinated after 72 h of desiccation at 20°C, and 76%, 49% or 12% RH. Seed α-amylase activity was determined at each stage of development and correlated with seed germination. Desiccation at 76% and 49% RH had no significant effect on the germination of seeds at 4, 6 and 8 WAF, whereas it improved germination of seeds at 2 WAF. Low RH (12%) significantly reduced seed germination at all stages of development. There was a positive correlation ( r = 0.68, P ≤ 0.05) between germination and α-amylase activity during seed development. Scanning electron microscopy also revealed a correlation between starch grain occurrence in the endosperm and α-amylase activity. Placenta water potential decreased with fruit and seed maturation, and correlated negatively with improved seed germination and α-amylase activity. Promotion of seed germination by desiccation in developing cherry tomato seeds was lost 4 weeks prior to mass maturity (80 ± 3% seed water content and –2.3 ± 0.1 MPa placenta water potential). It is proposed that the water potential differential between the placenta and the seeds influences α-amylase activity and germination behaviour during development.